Plant Pests of the Middle East

 

Publications by year

<embed>

Publications by Authors

entomology authors

Recent Publications

Contact Us

The Department of Entomology
The Robert H. Smith Faculty of Agriculture, Food and Environment
The Hebrew University of Jerusalem
Herzl 229, Rehovot 7610001, ISRAEL

Tel: 08-9489223 
Fax: 08-9366768
Email: orlytal@savion.huji.ac.il

Publications

2016
Kleijn, D. ; Winfree, R. ; Bartomeus, I. ; Carvalheiro, L. G. ; Henry, M. ; Isaacs, R. ; Klein, A. - M. ; Kremen, C. ; M’Gonigle, L. K. ; Rader, R. ; et al. Erratum: Corrigendum: Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. 2016, 7 10841. Publisher's VersionAbstract
Nature Communications 6: Article number: 7414 (2015); Published: 16 June 2015; Updated: 18 February 2016. The authors inadvertently omitted Kimiora L. Ward, who managed and contributed data, from the author list. This has now been corrected in both the PDF and HTML versions of the Article.
Pisanty, G. ; Afik, O. ; Wajnberg, E. ; Mandelik, Y. Watermelon pollinators exhibit complementarity in both visitation rate and single-visit pollination efficiency. Journal of Applied Ecology 2016, 53, 360-370. Publisher's VersionAbstract
Summary The concept of pollinator niche complementarity maintains that species-rich pollinator communities can provide higher and more stable pollination services than species-poor communities, due to contrasting spatial and/or temporal pollination activity among groups of pollinators. Complementarity has usually been examined in pollinators’ patterns of flower visitation or abundance, while largely neglecting the possibility of complementarity in patterns of single-visit contribution to fruit/seed set (pollination efficiency). However, variability in pollination efficiency can greatly affect pollinators’ overall pollination services and may therefore contribute an additional, important aspect of complementarity. In this study, we investigated the existence of pollinator complementarity in both visitation rates and pollination efficiencies. The study was conducted in 43 watermelon fields cultivated for seed consumption in a Mediterranean agro-natural landscape in central Israel. We studied spatiotemporal variation in pollinators’ visitation activity, measured by repeated observations and netting, and single-visit pollination efficiency, measured by the fruit and seed set rates of hermaphrodite flowers exposed to a single bee visit. Visitation and pollination efficiency were measured throughout the day and season, within and between fields with contrasting availability of nearby wild plants, and among flowers of different sizes. Pollinator species’ visitation rates as well as single-visit fruit set efficiencies, but not seed set efficiencies, exhibited significant spatiotemporal variation that contributed to their complementarity. Pollinators’ visit frequencies were affected by surrounding land use, location within field, time throughout the season, and time of day. Pollinators’ fruit set efficiencies were affected by ovary size and time of day. Synthesis and applications. Crop pollinators may exhibit complementarity in both their visitation rates and pollination efficiencies, which can promote the overall level and stability of their pollination services. Complementarity in pollination efficiencies suggests further diversity effects on crop yield, and calls for taking into account the variability in pollination efficiency along spatiotemporal scales rather than considering it a constant, species-specific trait. However, some modes of niche complementarity may not necessarily translate into increased pollination services and crop yield; the relevance and limitations of such mechanisms should be considered in the light of the specific crop and management system studied.
Carmel, I. ; Tram, U. ; Heifetz, Y. Mating induces developmental changes in the insect female reproductive tract. Current opinion in insect science 2016, 13, 106—113. Publisher's Version
Elgart, M. ; Stern, S. ; Salton, O. ; Gnainsky, Y. ; Heifetz, Y. ; Soen, Y. Impact of gut microbiota on the fly’s germ line. 2016, 7 11280. Publisher's VersionAbstract
Unlike vertically transmitted endosymbionts, which have broad effects on their host’s germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation.
Avila, F. W. ; Sánchez-López, J. A. ; McGlaughon, J. L. ; Raman, S. ; Wolfner, M. F. ; Heifetz, Y. Nature and Functions of Glands and Ducts in the Drosophila Reproductive Tract. In Extracellular Composite Matrices in Arthropods; Cohen, E. ; Moussian, B., Ed. Extracellular Composite Matrices in Arthropods; Springer International Publishing: Cham, 2016; pp. 411–444. Publisher's VersionAbstract
Successful reproduction requires interactions between males and females at many levels: the organisms, their cells (the gametes), and their molecules. Among the latter, secreted products of male and female reproductive glands are especially important. These molecules are particularly well understood in Drosophila melanogaster, because of this insect's excellent molecular genetic tools. Here, we discuss the biology of Drosophila reproductive glands, including their development, structure, and secreted products. These glands include important secretory centers, tissues that play roles in gamete maintenance and perhaps in modification, and organs that mediate dynamic transfer of gametes and molecules, and gamete support and/or discharge. Components of seminal fluid produced by male reproductive glands enter the female during mating. There, they interact with female proteins, neurons, and pathways to convert the female from a ``poised'' pre-mated state to an active post-mating state. This mated state is characterized by high levels of egg production, by sperm storage, and by post-mating behaviors related to re-mating, activity, and feeding. Female reproductive gland secretions include additional molecules important for sperm survival or egg transit. The interplay and coordination between male- and female-derived molecules is an area of intense study. Its conclusions are relevant to understanding reproduction in insects and, more broadly, in all animals, and as well as to questions about chemical communication, hormone biology and evolution.
Maoz, Y. ; Gal, S. ; Argov, Y. ; Domeratzky, S. ; Coll, M. ; Palevsky, E. Intraguild interactions among specialised pollen feeders and generalist phytoseiids and their effect on citrus rust mite suppression. Pest Management Science 2016, 72, 940-949. Publisher's VersionAbstract
Abstract BACKGROUND Antagonistic interactions among predators with shared prey are thought to hamper their ability to suppress herbivores. Our aim was to quantify intraguild interactions in omnivorous predatory mite assemblages in the presence of pollen, and assess their effect on pest populations. We focused on the following naturally occurring phytoseiid species in Israeli citrus orchards and their ability to suppress a key pest, the citrus rust mite (CRM) Phyllocoptruta oleivora (Eriophyidae): the generalists Amblyseius swirskii and Typhlodromus athiasae and the specialised pollen feeders Iphiseius degenerans, Euseius scutalis, E. stipulatus and E. victoriensis. Evaluations were performed on two spatial scales, tree seedlings and leaf discs. RESULTS On seedlings, experiments were conducted to quantify the interactions between predators in the presence of pollen and its effects on CRM suppression. On leaf discs, intraguild interactions were studied between pairs of phytoseiid species in the presence of pollen without CRM. On seedlings, the specialised pollen predators were more effective at suppressing CRM populations than the generalist predators. CONCLUSION In most cases, the more aggressive intraguild predator was the specialised pollen feeder. Similarly, leaf-disc experiments suggest that in these interactions the specialised pollen feeders tend to be the intraguild predators more often than the intraguild prey. © 2015 Society of Chemical Industry
Schuldiner-harpaz, T. ; Coll, M. ; Weintraub, P. G. Prey and Pollen Food Choice Depends on Previous Diet in an Omnivorous Predatory Mite. Environmental Entomology 2016, 45, 995-998. Publisher's VersionAbstract
The time allocated by omnivorous predators to consuming prey versus plant-provided foods (e.g., pollen) directly influences their efficacy as biocontrol agents of agricultural pests. Nonetheless, diet shifting between these two very different food sources remains poorly understood. We hypothesized that previous diet composition influences subsequent choice of prey and plant food types. We tested this hypothesis by observing the foraging choices of Amblyseius swirskii (Athias-Henriot) mites (Mesostigmata: Phytoseiidae), which were first maintained on either prey (broad mites) or corn pollen, and then offered familiar and unfamiliar foods. A. swirskii exhibited strong fidelity to familiar food, whether prey or pollen, suggesting there are physiological or behavioral costs involved in shifting between such different foods. Results illustrate the importance of previous diet for subsequent pest consumption by omnivorous natural enemies.
Dekel, A. ; Pitts, R. J. ; Yakir, E. ; Bohbot, J. D. Evolutionarily conserved odorant receptor function questions ecological context of octenol role in mosquitoes. 2016, 6 37330. Publisher's VersionAbstract
Olfaction is a key insect adaptation to a wide range of habitats. In the last thirty years, the detection of octenol by blood-feeding insects has been primarily understood in the context of animal host-seeking. The recent discovery of a conserved octenol receptor gene in the strictly nectar-feeding elephant mosquito Toxorhynchites amboinensis (TaOr8) suggests a different biological role. Here, we show that TaOR8 is a functional ortholog of its counterparts in blood-feeding mosquitoes displaying selectivity towards the (R)-enantiomer of octenol and susceptibility to the insect repellent DEET. These findings suggest that while the function of OR8 has been maintained throughout mosquito evolution, the context in which this receptor is operating has diverged in blood and nectar-feeding mosquitoes.
Ya'kobovitz, M. K. ; Butters, T. D. ; Cohen, E. Inhibition of α-glucosidase activity by N-deoxynojirimycin analogs in several insect phloem sap feeders. Insect Science 2016, 23, 59-67. Publisher's VersionAbstract
Abstract Secondary metabolites and synthetic iminosugars that structurally resemble monosaccharides are potent inhibitors of α-glucosidase activity. The enzyme is core in cleaving sucrose in phloem feeding insects and it also plays a crucial role of reducing osmotic stress via the formation of oligosaccharides. Inhibition of hydrolysis by iminosugars should result in nutritional deficiencies and/or disruption of normal osmoregulation. Deoxynojirimycin (DNJ) and 2 N-alkylated analogs [N-butyl DNJ (NB-DNJ) and N-nonyl DNJ (NN-DNJ)] were the major iminosugars used throughout the study. The extensive experiments conducted with α-glucosidase of the whitefly Bemisia tabaci indicated the competitive nature of inhibition and that the hydrophilic DNJ is a potent inhibitor in comparison to the more hydrophobic NB-DNJ and NN-DNJ compounds. The same inhibitory pattern was observed with the psyllid Cacopsylla bidens α-glucosidase. In contrast to the above pattern, enzymes of the aphids, Myzus persicae and Aphis gossypii were more sensitive to the hydrophobic iminosugars as compared to DNJ. In vivo experiments in which adult B. tabaci were fed dietary iminosugars, show that the hydrophilic DNJ was far less toxic than the lipophilic NB-DNJ and NN-DNJ. It is proposed that this pattern is attributed to the better accessibility of the hydrophobic NN-DNJ to the α-glucosidase membrane-bound compartment in the midgut. Based on the inhibitory effects of certain polyhydroxy N-alkylated iminosugars, α-glucosidase of phloem feeding hemipterans could serve as an attractive target site for developing novel pest control agents.