Publications by year

<embed>

Recent Publications

Contact Us

The Department of Entomology
The Robert H. Smith Faculty of Agriculture, Food and Environment
The Hebrew University of Jerusalem
P.O Box 12, Rehovot 76100, ISRAEL

Tel: 08-9489223 
Fax: 08-9366768
Email: orlytal@savion.huji.ac.il

Publications

2019
Dekel, A. ; Yakir, E. ; Bohbot, J. D. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochemistry and Molecular Biology 2019, 111, 103174. Publisher's VersionAbstract
Controlling Ae. aegypti populations and the prevention of mosquito bites includes the development of monitoring, repelling and attract-and-kill strategies that are based on understanding the chemical ecology of these pests. Olfactory-mediated attraction to mammals has recently been linked to the mosquito Aedes aegypti odorant receptor Or4, which is activated by animal-released 6-Methyl-5-hepten-2-one (sulcatone). This odorant is also a major component of flower scents and may play a role outside animal-host seeking. To explore the role of this chemical cue, we looked at the interaction between sulcatone and an Or4 homolog expressed in the antennae of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Using the two-electrode voltage clamp of Xenopus oocytes as a heterologous expression system, we show that this receptor is a high intensity sulcatone receptor comparable to its Aedes counterparts. We also show that OR4 is activated by other aliphatic ketones and is inhibited by DEET. This pharmacological characterization suggests that sulcatone may be operating in more than one context in the Culicidae family.
Nash, A. ; Urdaneta, G. M. ; Beaghton, A. K. ; Hoermann, A. ; Papathanos, P. A. ; Christophides, G. K. ; Windbichler, N. Integral gene drives for population replacement. Biol Open 2019, 8.Abstract
A first generation of CRISPR-based gene drives has now been tested in the laboratory in a number of organisms, including malaria vector mosquitoes. Challenges for their use in the area-wide genetic control of vector-borne disease have been identified, including the development of target site resistance, their long-term efficacy in the field, their molecular complexity, and practical and legal limitations for field testing of both gene drive and coupled anti-pathogen traits. We have evaluated theoretically the concept of integral gene drive (IGD) as an alternative paradigm for population replacement. IGDs incorporate a minimal set of molecular components, including drive and anti-pathogen effector elements directly embedded within endogenous genes - an arrangement that in theory allows targeting functionally conserved coding sequences without disrupting their function. Autonomous and non-autonomous IGD strains could be generated, optimized, regulated and imported independently. We performed quantitative modeling comparing IGDs with classical replacement drives and show that selection for the function of the hijacked host gene can significantly reduce the establishment of resistant alleles in the population, while drive occurring at multiple genomic loci prolongs the duration of transmission blockage in the face of pre-existing target site variation. IGD thus has potential as a more durable and flexible population replacement strategy.
Ruel, D. ; Yakir, E. ; Bohbot, J. D. Supersensitive Odorant Receptor Underscores Pleiotropic Roles of Indoles in Mosquito Ecology. Frontiers in Cellular Neuroscience 2019, 12, 533. Publisher's VersionAbstract
Mosquitoes exhibit highly diverse and fast evolving odorant receptors. The indole-sensitive odorant receptor gene clade, comprised of Or2 and Or10 is a notable exception on account of its conservation in both mosquito subfamilies. This group of paralogous genes exhibits a complex developmental expression pattern in Aedes aegypti: AaegOr2 is expressed in both adults and larvae, AaegOr10 is adult-specific and a third member named AaegOr9 is larva-specific. OR2 and OR10 have been deorphanized and are selectively activated by indole and skatole, respectively. Using the two-electrode voltage clamp of Xenopus oocytes expressing Ae. aegypti ORs, we show that AaegOR9 is supersensitive and narrowly tuned to skatole. Our findings suggest that Ae. aegypti has evolved two distinct molecular strategies to detect skatole in aquatic and terrestrial environments, highlighting the central ecological roles of indolic compounds in the evolutionary and life histories of these insects.
Dekel, A. ; Yakir, E. ; Bohbot, J. D. The evolutionarily conserved indolergic receptors of the non-hematophagous elephant mosquito Toxorhynchites amboinensis. Insect Biochemistry and Molecular Biology 2019, 110, 45 - 51. Publisher's VersionAbstract
The conservation of the mosquito indolergic receptors across the Culicinae and Anophelinae mosquito lineages, which spans 200 million years of evolution, is a testament to the central role of indolic compounds in the biology of these insects. Indole and skatole have been associated with the detection of oviposition sites and animal hosts. To evaluate the potential ecological role of these two compounds, we have used a pharmacological approach to characterize homologs of the indolergic receptors Or2 and Or10 in the non-hematophagous elephant mosquito Toxorhynchites amboinensis. We provide evidence that both receptors are narrowly tuned to indole and skatole like their counterparts from hematophagous mosquitoes. These findings indicate that Toxorhynchites detects indole and skatole in an ecological context to be determined and underscore the importance of understanding the role of these compounds in mosquitoes.
2018
Topman, S. ; Tamir-Ariel, D. ; Bochnic-Tamir, H. ; Stern Bauer, T. ; Shafir, S. ; Burdman, S. ; Hayouka, Z. Random peptide mixtures as new crop protection agents. Microbial Biotechnology 2018, 11, 1027-1036. Publisher's VersionAbstract
Summary Many types of crops are severely affected by at least one important bacterial disease. Chemical control of bacterial plant diseases in the field vastly relies on copper-based bactericides, yet with limited efficacy. In this study, we explored the potential of two random peptide mixture (RPM) models as novel crop protection agents. These unique peptide mixtures consist of random combination of l-phenylalanine and l- or d-lysine (FK-20 and FdK-20, respectively) along the 20 mer chain length of the peptides. Both RPMs displayed powerful bacteriostatic and bactericidal activities towards strains belonging to several plant pathogenic bacterial genera, for example, Xanthomonas, Clavibacter and Pseudomonas. In planta studies in the glasshouse revealed that RPMs significantly reduced disease severity of tomato and kohlrabi plants infected with Xanthomonas perforans and Xanthomonas campestris pv. campestris respectively. Moreover, RPM effects on reduction in disease severity were similar to those exerted by the commercial copper-based bactericide Kocide 2000 that was applied at a 12-fold higher concentration of the active compound relative to the RPM treatments. Importantly, the two tested RPM compounds had no toxic effect on survival of bees and Caco-2 mammalian cells. This study demonstrates the potential of these innovative RPMs to serve as crop protection agents against crop diseases caused by phytopathogenic bacteria.
2017
Yuval, B. Symbiosis: Gut Bacteria Manipulate Host Behaviour. Current Biology 2017, 27, R746 - R747. Publisher's VersionAbstract
Summary Bacteria resident in the gut of Drosophila modify the fly’s innate chemosensory responses to nutritional stimuli. In effect, the gut microbiome compels the host to forage on food patches that favour particular assemblages of bacteria.
Sapir, G. ; Baras, Z. ; Azmon, G. ; Goldway, M. ; Shafir, S. ; Allouche, A. ; STERN, E. ; Stern, R. A. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Scientia Horticulturae 2017, 219, 107 - 117. Publisher's VersionAbstract
Most apple cultivars are self-sterile and completely dependent on cross-pollination from a different cultivar in order to set fruit. Various insects may be pollinators, but the main one is the honey bee [HB] (Apis mellifera). However, despite the advantages of the honey bee as pollinator of many plants, it is a relatively inefficient pollinator of apple flowers. The main reason for this is the tendency of HBs to visit the apple flower from the side (sideworker), thus “stealing” nectar without touching the flower’s reproductive organs – stamens and stigma. In contrast, a bee that visits the flower from the top (topworker) contacts the flower’s reproductive organs, which results in better pollination. Due to the low pollination efficiency, few seeds are formed, and often the resulting fruit is too small to be of commercial value. Experiments conducted in Israel over the last few years have shown for the first time that adding bumblebees [BB] (Bombus terrestris) into pear orchards improved cross-pollination, thus increasing the number of seeds and subsequently fruit size. The goal of the present work was to test the hypothesis that adding BBs to apple orchards may improve cross-pollination. We found that adding BBs to the HBs in the apple orchard improved pollination in all tested cultivars, especially in ‘Gala’, which naturally suffers from relatively few seeds in the fruit. It appears that the addition of BBs did not only increase the number of pollinating insects in the orchard that could perform cross-pollination, including in the cool mornings and in adverse weather conditions, but that it also changed HB foraging behavior, which resulted in improved cross-pollination and increased efficiency, and subsequently more seeds and larger fruit. The improved pollination was due to the greater mobility of HBs between rows of pollinated cultivar and pollenizer, and to the greater proportion of topworkers, which are more efficient pollinators.
Santos-Garcia, D. ; Silva, F. J. ; Morin, S. ; Dettner, K. ; Kuechler, S. M. The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution. Genome Biology and Evolution 2017, 9 2893 - 2910. Publisher's VersionAbstract
Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbiont of a phytophagous heteropteran, present in the seed bug Henestaris halophilus (Hemiptera: Heteroptera: Lygaeoidea). Using phylogenomics and genomics approaches, we have assigned the newly characterized endosymbiont to the Sodalis genus, named as Candidatus Sodalis baculum sp. nov. strain kilmister. In addition, our findings support the reunification of the Sodalis genus, currently divided into six different genera. We have also conducted comparative analyses between 15 Sodalis species that present different genome sizes and symbiotic relationships. These analyses suggest that Ca. Sodalis baculum is a mutualistic endosymbiont capable of supplying the amino acids tyrosine, lysine, and some cofactors to its host. It has a small genome with pseudogenes but no mobile elements, which indicates middle-stage reductive evolution. Most of the genes in Ca. Sodalis baculum are likely to be evolving under purifying selection with several signals pointing to the retention of the lysine/tyrosine biosynthetic pathways compared with other Sodalis.
Sparks, J. T. ; Bohbot, J. D. ; Ristić, M. ; Mišić, D. ; Skorić, M. ; Mattoo, A. ; Dickens, J. C. Chemosensory Responses to the Repellent Nepeta Essential Oil and Its Major Component Nepetalactone by Aedes aegypti (Diptera: Culicidae), a Vector of Zika Virus. Journal of Medical Entomology 2017, 54, 957 - 963. Publisher's VersionAbstract
Nepeta essential oil (Neo; catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti (L.), an important vector of Zika virus, were poorly understood. Here we show that Neo volatiles activate olfactory receptor neurons within the basiconic sensilla on the maxillary palps of female Ae. aegypti. A gustatory receptor neuron sensitive to the feeding deterrent quinine and housed within sensilla on the labella of females was activated by both Neo and nepetalactone. Activity of a second gustatory receptor neuron sensitive to the feeding stimulant sucrose was suppressed by both repellents. Our results provide neural pathways for the reported spatial repellency and feeding deterrence of these repellents. A better understanding of the neural input through which female mosquitoes make decisions to feed will facilitate design of new repellents and management strategies involving their use.
Schuldiner-harpaz, T. ; Coll, M. Effect of Diet History on Prey and Pollen Food Choice by Two Lady Beetle Species. Journal of Insect Behavior 2017, 30, 432-438. Publisher's VersionAbstract
Mixed diets of prey and plant-provided foods, such as pollen, have been shown to benefit a wide range of arthropods. However, diet shifting between these two very different food sources remains poorly understood. We hypothesized that previous diet should influence subsequent time allocation between prey and plant food types; to reach a balanced diet, consumers are expected to allocate more time to resources previously lacking in their diet. We tested this hypothesis by observing the foraging choices of larvae of two omnivorous coccinellid species: Coccinella septempunctata L. and Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), following a diet history of prey, pollen or a mixed diet of both food types. Results showed an asymmetrical tendency of C. septempunctata larvae to complement their previous diet with unfamiliar food: larvae allocated more time to pollen feeding, but not to prey, when each of the foods was previously absent from their diet. Study results have important implications for the use of plant-provided food supplements to enhance biological control by these omnivorous consumers.
Ben-Yosef, M. ; Zaada, D. S. Y. ; Dudaniec, R. Y. ; Pasternak, Z. ; Jurkevitch, E. ; Smith, R. J. ; Causton, C. E. ; Lincango, M. P. ; Tobe, S. S. ; Mitchell, J. G. ; et al. Host-specific associations affect the microbiome of Philornis downsi, an introduced parasite to the Galápagos Islands. Mol Ecol 2017, 26, 4644-4656.Abstract
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host-parasite co-evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host-related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.
Pavlidi, N. ; Gioti, A. ; Wybouw, N. ; Dermauw, W. ; Ben-Yosef, M. ; Yuval, B. ; Jurkevich, E. ; Kampouraki, A. ; Van Leeuwen, T. ; Vontas, J. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci Rep 2017, 7 42633.Abstract
The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.