check
To B or Not to B: Comparative Genomics Suggests as a Source of B Vitamins in Whiteflies | Entomology

 

Plant Pests of the Middle East

 

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

The Department of Entomology
The Robert H. Smith Faculty of Agriculture, Food and Environment
The Hebrew University of Jerusalem
Herzl 229, Rehovot 7610001, ISRAEL

Tel: 08-9489223 
Fax: 08-9366768
Email: morze@savion.huji.ac.il

To B or Not to B: Comparative Genomics Suggests as a Source of B Vitamins in Whiteflies

Citation:

Santos-Garcia, D. ; Juravel, K. ; Freilich, S. ; Zchori-Fein, E. ; Latorre, A. ; Moya, A. ; Morin, S. ; Silva, F. J. . To B Or Not To B: Comparative Genomics Suggests As A Source Of B Vitamins In Whiteflies. Front Microbiol 2018, 9, 2254.

Date Published:

2018

Abstract:

Insect lineages feeding on nutritionally restricted diets such as phloem sap, xylem sap, or blood, were able to diversify by acquiring bacterial species that complement lacking nutrients. These bacteria, considered obligate/primary endosymbionts, share a long evolutionary history with their hosts. In some cases, however, these endosymbionts are not able to fulfill all of their host's nutritional requirements, driving the acquisition of additional symbiotic species. Phloem-feeding members of the insect family Aleyrodidae (whiteflies) established an obligate relationship with Portiera aleyrodidarum, which provides its hots with essential amino acids and carotenoids. In addition, many whitefly species harbor additional endosymbionts which may potentially further supplement their host's diet. To test this hypothesis, genomes of several endosymbionts of the whiteflies and were analyzed. In addition to , all three species were found to harbor one and one endosymbiont. A comparative analysis of genomes revealed that although all three are capable of synthesizing B vitamins and cofactors, such as pyridoxal, riboflavin, or folate, their genomes and phylogenetic relationship vary greatly. of and belong to the same clade, and display characteristics of facultative endosymbionts, such as large genomes (3 Mb) with thousands of genes and pseudogenes, intermediate GC content, and mobile genetic elements. In contrast, of belongs to a different lineage and displays the characteristics of a primary endosymbiont-a reduced genome (670 kb) with ~400 genes, 32% GC content, and no mobile genetic elements. However, the presence of 274 pseudogenes suggests that this symbiotic association is more recent than other reported primary endosymbionts of hemipterans. The gene repertoire of of is completely integrated in the symbiotic consortia, and the biosynthesis of most vitamins occurs in shared pathways with its host. In addition, endosymbionts have also retained the ability to produce riboflavin, flavin adenine dinucleotide, and folate, and may make a nutritional contribution. Taken together, our results show that hold a pivotal place in whitefly nutrition by their ability to produce B vitamins.