Plant Pests of the Middle East


Publications by year


Publications by Authors

entomology authors

Recent Publications

Contact Us

The Department of Entomology
The Robert H. Smith Faculty of Agriculture, Food and Environment
The Hebrew University of Jerusalem
Herzl 229, Rehovot 7610001, ISRAEL

Tel: 08-9489223 
Fax: 08-9366768

Can CRISPR gene drive work in pest and beneficial haplodiploid species?


Li, J. ; Harari, O. A. ; Doss, A. - L. ; Walling, L. L. ; Atkinson, P. W. ; Morin, S. ; Tabashnik, B. E. Can CRISPR gene drive work in pest and beneficial haplodiploid species?. EVOLUTIONARY APPLICATIONS 2020, 13, 2392-2403.

Date Published:



Gene drives based on CRISPR/Cas9 have the potential to reduce the enormous harm inflicted by crop pests and insect vectors of human disease, as well as to bolster valued species. In contrast with extensive empirical and theoretical studies in diploid organisms, little is known about CRISPR gene drive in haplodiploids, despite their immense global impacts as pollinators, pests, natural enemies of pests, and invasive species in native habitats. Here, we analyze mathematical models demonstrating that, in principle, CRISPR homing gene drive can work in haplodiploids, as well as at sex-linked loci in diploids. However, relative to diploids, conditions favoring the spread of alleles deleterious to haplodiploid pests by CRISPR gene drive are narrower, the spread is slower, and resistance to the drive evolves faster. By contrast, the spread of alleles that impose little fitness cost or boost fitness was not greatly hindered in haplodiploids relative to diploids. Therefore, altering traits to minimize damage caused by harmful haplodiploids, such as interfering with transmission of plant pathogens, may be more likely to succeed than control efforts based on introducing traits that reduce pest fitness. Enhancing fitness of beneficial haplodiploids with CRISPR gene drive is also promising.


Last updated on 12/13/2021