Date Published:
AUG 26
Abstract:
Background The Asian tiger mosquitoAedes albopictusis globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of theAe. albopictusgenome is essential to develop new approaches that involve genetic manipulation of mosquitoes. Results We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of theAe. albopictusgenome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverseAe. albopictuspopulations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. Conclusion The AalbF2 genome assembly represents the most up-to-date collective knowledge of theAe. albopictusgenome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.