check
Species-complex diversification and host-plant associations in Bemisia tabaci: A plant-defence, detoxification perspective revealed by RNA-Seq analyses | Entomology

 

Plant Pests of the Middle East

 

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

The Department of Entomology
The Robert H. Smith Faculty of Agriculture, Food and Environment
The Hebrew University of Jerusalem
Herzl 229, Rehovot 7610001, ISRAEL

Tel: 08-9489223 
Fax: 08-9366768
Email: morze@savion.huji.ac.il

Species-complex diversification and host-plant associations in Bemisia tabaci: A plant-defence, detoxification perspective revealed by RNA-Seq analyses

Citation:

Malka, O. ; Santos-Garcia, D. ; Feldmesser, E. ; Sharon, E. ; Krause-Sakate, R. ; Delatte, H. ; van Brunschot, S. ; Patel, M. ; Visendi, P. ; Mugerwa, H. ; et al. Species-Complex Diversification And Host-Plant Associations In Bemisia Tabaci: A Plant-Defence, Detoxification Perspective Revealed By Rna-Seq Analyses. Mol Ecol 2018, 27, 4241-4256.

Date Published:

2018 11

Abstract:

Insect-plant associations and their role in diversification are mostly studied in specialists. Here, we aimed to identify macroevolution patterns in the relationships between generalists and their host plants that have the potential to promote diversification. We focused on the Bemisia tabaci species complex containing more than 35 cryptic species. Mechanisms for explaining this impressive diversification have focused so far on allopatric forces that assume a common, broad, host range. We conducted a literature survey which indicated that species in the complex differ in their host range, with only few showing a truly broad one. We then selected six species, representing different phylogenetic groups and documented host ranges. We tested whether differences in the species expression profiles of detoxification genes are shaped more by their phylogenetic relationships or by their ability to successfully utilize multiple hosts, including novel ones. Performance assays divided the six species into two groups of three, one showing higher performance on various hosts than the other (the lower performance group). The same grouping pattern appeared when the species were clustered according to their expression profiles. Only species placed in the lower performance group showed a tendency to lower the expression of multiple genes. Taken together, these findings bring evidence for the existence of a common detoxification "machinery," shared between species that can perform well on multiple hosts. We raise the possibility that this "machinery" might have played a passive role in the diversification of the complex, by allowing successful migration to new/novel environments, leading, in some cases, to fragmentation and speciation.